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Deterministic Execution of Ptides Programs

Patricia Derler, John C. Eidson, Stuart Goose, Edward A. Lee, Slobodan Matic, and Michael Zimmer

May 15, 2013

Abstract

This paper discusses the use of the Ptides model of computation as a coordination language
for the design of deterministic, event-driven, real-time, distributed embedded systems. Specif-
ically, the paper shows how the use of synchronized clocks in the context of Ptides enables
explicit, platform independent specification of functionality and timing. From this specification,
we generate code for two target platforms: Renesas and XMOS. The generated code includes a
lightweight operating system which performs scheduling, I/O and network handling as well as
application specific tasks.

Ptides models are developed in Ptolemy, a design and simulation environment for heteroge-
neous systems. This framework also contains a code generation framework which is leveraged
to derive Ptides implementations from the models. We illustrate our approach by designing
a simple Ptides application, a small component in a printing press responsible for on-the-fly
changeover between paper rolls. We demonstrate the design process and show that the gener-
ated code exhibits identical timing at the cyber-physical boundary on multiple implementation
platforms. 1

1 Introduction

This paper discusses the use of the Ptides model of computation (MoC) [1] as a coordination lan-
guage [2] for the design of deterministic, event-driven, real-time, distributed embedded systems.
Such systems are common in industrial and commercial systems and typically include sensors, ac-
tuators and computing elements, often on different platforms, communicating via a network. The
timing of sensing and actuation is often critical when the system is used to control or monitor
external processes. Timing requirements for accuracy and precision are very application depen-
dent and range from milliseconds for many devices, microseconds for high speed machinery and
telecommunications, and nanoseconds or better for some military and scientific applications.

We illustrate how the Ptides methodology allows the system or device designer to explicitly
specify both the functional and the external timing properties of a device or system in a platform
independent manner. We also show how, with simple constraints, synchronized clocks with addi-
tional hardware support allow enforcement of highly accurate and precise timing constraints that

1This work was supported in part by the iCyPhy Research Center (Industrial Cyber-Physical Systems, supported
by IBM and United Technologies), and the Center for Hybrid and Embedded Software Systems (CHESS) at UC
Berkeley (supported by the National Science Foundation, NSF awards #0720882 (CSR-EHS: PRET) and #0931843
(ActionWebs), the Naval Research Laboratory (NRL #N0013-12-1-G015), and the following companies: Bosch,
National Instruments, and Toyota).

Special thanks go to Siemens for a grant and to National Semiconductor, XMOS, Renesas and National Instruments
for equipment grants.
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are independent of the execution times of the embedded code. These characteristics should alle-
viate current problems in maintaining interfaces, especially timing interfaces, under code updates
in devices or device upgrades in systems. We extend previous work [3] by reporting experimental
data illustrating the properties of this approach and discussing the role of supporting hardware.
Modeling, simulation and code generation is implemented in Ptolemy II, [4], an academic tool for
designing and experimenting with heterogeneous system models.

The first section of this paper provides a basic understanding of the Ptolemy II system and
the Ptides extension. The second section discusses the basics of Ptolemy II, the Ptides model and
describes how to construct applications. The third section discusses the use of Ptides as well as the
design and execution environment. The fourth section illustrates the process via a simple controller
design, and an experimental verification of the timing. The paper concludes with a summary and
a brief outlook on future work.

2 Ptolemy II and Ptides basics

Ptolemy II is a modeling and simulation framework for concurrent models of computation (MoC)
and heterogeneous mixtures of MoCs. MoCs that are implemented in Ptolemy include discrete-event
(DE), continuous time (CT), synchronous reactive, dataflow and process networks. We implement
Ptides in Ptolemy as a DE-based MoC. CT is typically used to represent physical processes. This
allows for co-simulation of plant models with Ptides designed control systems to study the functional
and timing properties of the entire system. A DE model [5] was selected for Ptides because DE
systems executing tokens in timestamp order have the property that given a set of input tokens,
all correct DE implementations will produce identical sets of output tokens [6].

2.1 Actor-oriented design

Ptolemy follows the actor-oriented design principle [7] and graphically represents models where
actors appear to a designer using the Ptolemy graphical editor as boxes with ports as illustrated
in the center panel of Figure 1.

All communication between actors is via tokens passed between ports. In a Ptides design
these tokens are a (value, timestamp, microstep) triple. The (timestamp, microstep) pair models
a superdense formulation of time where the timestamp represents model time and the microstep
allows ordering of events with identical values of the model time [8].

The model of computation used by a model is determined by the Director2 component which
governs the Ptolemy simulation engine as well as specifying the code generation MoC, in this
case DE. In this model the DiscreteClock actor generates periodic events with tokens (1,0,1) and
(0,100,1) repeating with a period of 200 so that the initial (time 0) set point is 1 which then changes
to 0 at time 100.

Ptolemy models can be hierarchical as illustrated by the top and bottom panels. The top panel
is a CT model of the Plant Model actor and implements the integral equation (RC)×T =

∫
(D−T )dt

where T is the TachometerOutput variable and D is the DriveInput variable. For constant D = D0

the solution is T = D0(1− e−t/RC). The ZeroOrderHold and PeriodicSampler actors are required
since the tokens representing the variables D and T cross the boundary between the CT and DE

2Italic fonts indicate names of artifacts in the figures.

2



domain in the hierarchy. The symbol labeled RC 10.0 specifies the parameter RC with a value of
10. The other actors have their obvious interpretation.

The bottom panel illustrates the model for the controller. In this case the PtidesDirector actor
specifies that Ptides semantics, a specialization of DE semantics, are enforced. Ptides semantics
are embodied in five special actors:

• Sensor ports are illustrated by the SetPoint and Tachometer ports in the bottom panel of
Figure 1. A Ptides sensor port takes the value of the sensor input, S1, at time, t1, and places
an event token (S1,t1,1) on the event queue. When this model is executed using the Ptolemy
simulator, the time t1 is the sample time modeled by the top level DE director and represents
physical time in the simulation. In code generated from this model, t1 is in the frame of
reference of the platform’s real-time clock.

• Actuator ports are illustrated by the SetPointMonitor and Drive ports. A Ptides actuator
port takes an input token (A2,t2,i) at its input and instantiates the value A2 at the actuator
output at a time t2 where t2 is the time in the frame of reference of the top level DE director
in simulation and of the platform’s real-time clock in a physical implementation.

• A network output port, (not illustrated in Figure 1), takes an input token (V3,t3,i) from its
input and embeds it in a message on the external network at a time tno in the frame of
reference of the top level DE director in simulation and of the platform’s real-time clock in
a physical implementation. tno is a parameter of the port and allows the designer to specify
the value as a time offset from the time of origin of upstream events, typically a sensor input
port.

• A network input port, (not illustrated in Figure 1), extracts the token (V3,t3,i) from the
message received from the external network and places it on the local event queue at a time
tni. The offset between tno on the sending platform and tni is a function of the network
protocol and typically the network traffic load.

• Time delay actors are illustrated by the TimeDelay and TimeDelay2 actors. A Ptides time
delay actor takes an input token (V4,t4,i) at its input and outputs a token (V4,t4 + tdelay,i).
The value of tdelay can be set as a parameter or taken from the bottom input port of the
actor. This actor permits the designer to specify the time delay between sensor inputs and
actuator outputs. For example, in Figure 1 a sensor reading at time ts at the Tachometer
input results in an actuation by the Drive actuator at a time ts + 0.001 where both the times
ts and ts + 0.001 are in the frame of reference of the top level DE director in simulation and
of the platform’s real-time clock in a physical implementation.

2.2 Timing considerations

It is easy to specify a system that cannot meet its timing constraints. In the example of Figure
1 if tdelay = 0 then, while the execution can be simulated, the system cannot be executed in a
real system since the computations take a finite amount of time. However, provided the specified
model delays, e.g. using the time delay actors, are greater than the execution times on a particular
platform, then DE semantics, simple constraints on actor temporal semantics, and the properties
of the sensor and actuator ports ensure that the external timing meets the specification to within
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Figure 1: Model of a simple control system.

the accuracy permitted by the implementation of these ports irrespective of the actual execution
time [9]. This is extremely important, since changes, such as improving algorithm performance or
using a faster processor, do not change the external timing performance of the device.

If the sensor input and actuator output are on different platforms communicating via a network,
the network delay must be bounded and included in the specification of end-to-end delay to ensure
that timing specifications are met. In networked systems, the real-time clocks in the various
platforms must be synchronized to the necessary degree of accuracy, for example via IEEE 1588
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[10], since the execution clearly depends on all timestamps at platform inputs and outputs using a
common time reference.

As noted, the timing accuracy depends on the implementation of the Ptides input and output
ports. Logically, sensor and actuator ports appear as illustrated in Figure 2. For example, for an
analog sensor, the sample and hold trigger is generally used as the sensor indicator that latches the
time, the sensor timestamp, from the real-time clock into the sensor timing register. Likewise, an
actuation timestamp placed in the actuator timing register by Ptides generated code is compared to
the real-time clock, and when the times match, the actuation trigger is generated. If these functions
are implemented in hardware, e.g. on an FPGA, the time accuracy will typically correspond to the
LSB of the clock. If implemented by code in a microprocessor, the accuracy will be determined
by interrupt latencies, and execution time considerations. Some of these considerations can be
addressed by using architectures such as XMOS [11] or PRET [12] where execution times are
predictable.

real-time clock

comparator

actuator timing register

sensor timing register

actuation trigger

actuation timestamp

sensor timestampsensor indicator

Figure 2: Logical model of sensor and actuator ports

2.3 Safe-to-process timing

A final important execution issue in correctly executing DE semantics in real time is illustrated in
Figure 3. Suppose a token, (SB, 30, 1), appears on port b of the AddSubtract adder. When can the
adder execute given the DE requirement that tokens must be processed in timestamp order? Any
event from sensorC on platformA with a timestamp ≤ 30 will already be in the event queue for port
c. Consider an event with timestamp 30 generated at sensorA on platformD. The sensorAnetwork
output port on platformD has a platform delay bound value of 1 ensuring that this event will be
placed on the network no later than time 30 + 1 relative to the platformD’s clock. Assume the
network transit time is bounded by a value of 5. Hence the event (SA, 30, 1) must arrive at the
sensorAnetwork input port and be placed on the event queue of platformA at a time no later than
30+1+5 = 36. Assume the maximum clock synchronization error is ε. Therefore, the AddSubtract
adder must delay processing the event (SB, 30, 1) on port b until at least time 36 + ε relative to
the clock on platformA. In analyzing a design for these safe to process values, accurate values
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PlatformAPlatformD

Figure 3: Safe to process example

for network delays and ε are required. Note that an event with a timestamp < 30 arriving after
the computation can be detected and appropriate application specific action taken. This may be
valuable in some applications.

3 Design and execution environment

The design and execution environment is illustrated in Figure 4. The designer typically uses a
graphical editor to produce a Ptides-based system model as shown in Figure 1.

Figure 4: Ptides design environment

The model properties are observed using a mixed MOC simulator (one that supports multiple
MOCs), in our case the Ptolemy simulator. Once the designer is satisfied, the target platform is
specified which in turn specifies platform specific versions of Ptides actors, e.g. I/O and network
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port actors. Causality analysis determines causal dependencies in the design to enable optimal DE
execution [13]. Schedulability analysis determines whether the selected platform is able to meet
the execution time constraints discussed in section 2.2. The code generator produces code that
executes on a lightweight OS, PtidyOS [14], that supports a DE style of execution, the platform
specific I/O and network ports and the synchronization of the platform real-time clock to its peers
in other system platforms. The portions of PtidyOS code that implement access to the real-time
clock, and I/O and network ports is platform specific. For other actors the PtidyOS code is the
output of standard compilers for the microprocessor. This permits automatic generation of the
final executable code from the design models.

4 Experimental results

To illustrate the temporal properties of a Ptides-based system, we implement a controller for a
flying paster, which is the device in a printing press that allows on-the-fly changeover from an
active to a spare roll of paper. The schematic of a flying paster is shown in Figure 5 and a video
of a flying paster in operation can be found at [15].

In Figure 5, the current roll of paper B feeds paper, i.e. the web, to the rest of the machine
via an idler wheel C. A sensor H detects the radius of the paper on B, generates a signal, radius,
and at a designated value directs a controller to bring the reserve roll A up to speed such that the
velocity of the paper at the edge of A matches that of the web. At a specified minimum radius,
sensor H generates an arming signal, arm. A sensor J detects the radius of the paper on A. The
outer layer of paper on A has a strip of double sided tape that can be detected by sensor G, which
then generates a signal, tape, the first time the tape is detected after the arm signal. This event
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Figure 6: Flying paster controller

also causes the idler wheel E to press the web against the reserve roll A, such that when the tape
reaches a point relative to G by an angle tapeToContactAngle, the two pieces of paper attach and
the paper on A follows the path of the web. At the angle tapeToCutAngle relative to G, the cutter
D cuts the paper feed from B allowing A to supply paper to the web. Clearly tapeToCutAngle
must be greater than tapeToContactAngle to ensure that the reserve paper is attached to the web
prior to cutting the feed from B. A sensor F detects the top dead center point, tdc, on roll A.

To demonstrate the timing properties of Ptides generated code, we implement the controller
shown in Figure 6, that accepts the sensor signals arm, tdc, tape, and radius, and generates the
signals contact and cut to drive the actuators. The controller also outputs the linear velocity of
the paper on roll A.

Recall from section 2.1 that events, e.g. arm, consist of a (valuearm, timestamparm, microsteparm)
triple. The Merge actor accepts the arm signal from the sensor and transmits it to the MR2 actor.
The MR2 actor has the property that the value, e.g. valuearm, of the most recent token on the
input is output as the (valuearm, timestampi, microstepi) triple where timestampi and microstepi

are the timestamp and microstep of a token received on the trigger port. This type of actor has a
default parameter specifying a value, in this case false, applied if the trigger occurs before a token
is received on the input. Therefore, when a tape signal is received after the arm signal, the logic
generates the tape trigger event with the timestamp of the tape event. The TimeDelay3 actor
increments this timestamp and sends the event to the contact actuator. A slight delay is required
since these computations take a finite amount of time to execute and Ptides semantics requires
that actuation occur when the timestamp and the platform clock values match. This is an example
of the schedulability requirement discussed in section 3. The tape trigger event also causes a false
event to be fed back to the Merge actor, which in turn sets the most recent value in MR2 to false
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thus suppressing the generation of additional tape trigger events. The MicrostepDelay actor incre-
ments the microstep value of the token and is necessary since inputs to actors, in this case MR2,
by DE semantics must be processed in strict superdense time order. Since the timestamp of the
token from the feedback loop is identical to that of the trigger input, the increment in the microstep
provides the needed sequential ordering. The process of checking for these causality loops is part
of the Causality Analysis block of Figure 4.

The tape trigger event is also sent to the TimeDelay2 actor. This actor increments the times-
tamp by the last value provided by an event on the port on the bottom side of the actor. This value
is produced by the actors on the path starting with the tdc sensor input. The TimeGap actor out-
puts the time interval between successive tdc signals, which from Figure 5 represents the rotation
period of roll A. This value is multiplied by the fraction of a period represented by the tapeToCut
angle thus yielding the correct delay for the tape sensor to the cut actuator path. Similarly, the
bottom path computes the paper velocity output based on the radius input from sensor J and the
rotation period.

4.1 Experiment design

To test the proposed design environment, code was generated from the Ptides model of Figure 6 for
two very different execution platforms. Simulation and execution results are shown in Figure 7. The
microprocessor on the Renesas platform [16] is a typical embedded controller found in industrial
applications. The clock and timing functions discussed in section 2.2 were implemented using timing
hardware in the DP83640 Ethernet PHY of Texas Instruments [17] used as the Ethernet interface
on the Renesas platform. The second test platform used an XMOS multicore microcontroller [18]
that provides up to 8 hardware supported threads of execution. XMOS devices execute with single
cycle execution of instructions and therefore provide very deterministic execution timing for the
code generated in this experiment.

In this experiment, the external input signals tdc, arm and tape were generated using National
Instruments PXI cards in lieu of using an actual flying paster. These inputs and the resulting
outputs contact and cut were captured using an oscilloscope. In Figure 7 the first set of inputs
show the signals tdc followed by arm and tape each separated by 50µs. The resulting outputs
contact and cut follow the tape signal by 200µs and 500µs respectively. The second set of inputs
consist of the tdc and tape signals but since there is no arm signal there are no outputs. In Figure 7
the timescales of the top, middle and lower panels are in ms, µs, and ms respectively resulting from
the different measurement instrumentation used for each. Note that the plots for the simulation
and for execution on the two platforms are identical in spite of the very different architectures and
capabilities of the two execution platforms. Although not visible at the scale of these plots, the
results were precise to 8ns on the Renesas platform using the DP83640 and to a similar precision
on the XMOS platform.

In XMOS, if more than four hardware execution threads are active, the throughput of each
thread is reduced. The XMOS plot shown is for the case where four threads are used for the
execution (but not always active). Although not illustrated, we also compiled the code for two
other cases: using all eight hardware threads and utilizing a second core. The resulting IO timing
from each case is identical, even though the execution timing varied.

The invariance of the external timing with respect to changes in platform capability results from
the properties of the Ptides actors discussed in section 2. Consider the token (true, 100µs, 1) placed
on the event queue at the tape sensor. The token (true, 100µs+ tdctocutdelay, 1) = (true, 600µs, 1)
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Figure 7: Flying paster results

produced at the output of actor TimeDelay2 is applied to the cut actuator at time 600µs on the
clock of the controller platform. Note that the time τ that this token was produced on the output
of actor TimeDelay2 is 100µs < τ ≤ 600µs. For a slow processor τ will be closer to 600µs and for a
fast processor closer to 100µs but as long as τ ≤ 600µs the external timing specifications are met.
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4.2 Insights gained

External timing accuracy depends on the implementation of the architecture features discussed in
connection with Figure 2. These features can be implemented in software but the latency and jit-
ter will reduce the accuracy compared to the hardware assisted approaches demonstrated in these
experiments. Less obvious are the other time constraints imposed by the implementation architec-
ture. For example, if the interfaces used by software to acquire sensor data or cause actuation have
excessive latency this reduces the available software execution time and therefore may preclude
a feasible schedule during schedule analysis. Likewise, the safe-to-process analysis at a multiport
actor requires that the execution be postponed for the computed real-time delay. The value of
this delay is relative to the time of the platform clock and for efficient implementation requires a
low latency read path to this clock. This suggests that external hardware should have a memory
mapped interface to the platform clock and sensor and actuator registers rather than the serial or
network path interfaces often found.

5 Conclusions and future work

We outlined the principal ideas of the design, simulation, and code generation environment for
Ptides and illustrated how it is used on a simple example. This example describes functional
and timing behavior in a platform-independent way. A comparison of simulation results with
results from executions from two very different implementations of this example shows that correct
functional and timing behavior can be achieved and the generated code exhibits identical timing
at the cyber-physical boundary on the different implementation platforms. Specifically, network
latency and clock synchronization error must be bounded and the platforms must be capable of
executing the code within the design times. It is also possible to detect timing errors at run time,
e.g. errors introduced by transient out of specification network delay. These characteristics are
valuable in a variety of application domains such as test or control systems where deterministic
timing is critical and must be invariant over changes in internal component design, upgrades in
microprocessor speed and the like.

The Ptides principles should also allow machine readable timing interface specifications to be
created for devices. This raises the possibility of designing components and systems that can do
run time checks for timing feasibility. This possibility and the investigation of optimum designs for
the hardware support of Ptides semantics provide interesting opportunities for future research.
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